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(1): First, the equation is Laplace transformed to obtain a
first-order ODE in the variable E(p). The first-order ODELinear mode conversion, an important issue in the physics of

plasma waves, involves an ordinary differential equation of at least is easily solved for E(p), and then E(x) is found from the
fourth order. Attempts to integrate this differential equation using Bromwich integral of E(p), i.e. from a contour integral in
conventional numerical methods typically fail to provide a physi- the complex p plane. Because Eq. (1) is fourth-order, therecally sensible result. This failure occurs because small, unavoidable

are four distinct integration paths for the contour integral,truncation and differencing errors excite nonphysical, mathemati-
each giving one of the four independent solutions to Eq.cally allowed exponentially growing solutions which quickly over-

whelm the desired physical solution. We present here a two-point (1). The appropriate linear combination of solutions is
boundary numerical method which avoids exciting these unwanted found by imposing four physically relevant boundary con-
nonphysical solutions and so provides solutions that are physically

ditions. This turns out to be equivalent to assigning thesignificant. The numerical algorithm is a generalization of the stan-
ends of the integration paths, since analyticity within adard tridiagonal method and provides single-pass solutions which

satisfy the original difference equations to within the numerical region means that a given integration path with fixed end
accuracy of the computer. Q 1997 Academic Press points can be deformed in that region and still give the

same result. The end points are typically determined using
boundary conditions at x R 6y; these boundary condi-

1. INTRODUCTION tions at infinity are expressed in terms of qualitative prop-
erties of the modes, e.g., ‘‘no slow wave propagates toMany different waves can propagate in a plasma. When
the right,’’ or ‘‘all modes are bounded at infinity.’’ Bythe plasma is spatially uniform, qualitatively different
deforming the integration paths through saddle points inwaves are linearly independent. However, when the plasma
the p-plane, steepest descent methods can be used to obtainis spatially nonuniform, there can be strong localized cou-
large uxu asymptotic solutions and, hence, matching formu-pling between a pair of qualitatively different modes. This
lae can be obtained for WKB (Wentzl–Kramers–Brillouin)coupling typically occurs when the wavelengths of the two
solutions valid outside the neighborhood of x 5 0. Thismodes depend on plasma position and at some critical
analytic procedure is intricate and may not work for sys-location have the same value. One mode may convert
tems more complicated than Eq. (1).completely into the other at this location, or there may be

Equation (1) is usually a local approximation of somesome combination of partial transmission, partial reflec-
more complicated equation, and, if quantitative results aretion, and partial conversion. Mathematically, linear mode
required, it would seem reasonable to attempt a numericalconversion is a boundary layer phenomenon and is associ-
integration of the original equation. It is tempting to tryated with a fourth or higher order ordinary differential
to solve this equation using standard numerical methodsequation (ODE). Many linear mode conversion situations
(e.g., Runge–Kutta). However, it is found that mathemati-can be expressed in terms of the ‘‘standard equation’’ [1–4]
cally allowed, nonphysical exponentially growing solutions
overwhelm the physical solution no matter which way the
solution proceeds from the x 5 0 layer. This failure occursd 4E

dx4 1 x
d 2E
dx2 1 GE 5 0, (1)

because small numerical errors (e.g., truncation or differ-
encing errors) always introduce a small ‘‘seed’’ of exponen-
tially growing wave, even if the unwanted mode had notwhich has been arranged to have mode conversion at x 5 0.

For purposes of comparison with the numerical tech- been imposed as part of the boundary conditions. These
exponentially growing modes quickly dwarf the desirednique presented later, we briefly summarize the standard

analytic method used to obtain asymptotic solutions of Eq. physically relevant solution giving a nonsensical result.
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The analytic method outlined earlier explicitly casts out The paper is organized as follows: Section 2 presents
the derivation of the algorithm for solving Eqs. (2). Sectionunwanted modes by imposing boundary conditions at two
3 generalizes this method to solve systems of M coupledpoints, one on each side of the mode conversion layer.
equations in M dependent variables. Section 4 discussesThis suggests that the unwanted, nonphysical exponentially
examples for some actual mode conversion problems. Sec-growing modes might be avoided in a numerical solution
tion 5 contains a brief summary and conclusions.by imposing boundary conditions at two points [5], one on

each side of the boundary layer.
2. TRIDIAGONAL SCHEME FOR TWO COUPLEDThis problem has been dealt with by various methods

SECOND-ORDER ODESin previous work. In general, these approaches impose two-
point boundary conditions either by matching to analytical

We now derive the algorithm for solving Eq. (2); thissolutions on either side of the conversion layer or by using
algorithm is a generalization of the tridiagonal matrix in-implicit numerical schemes. The analytical matching ap-
version scheme commonly used for solving an individualproach was used by Colestock and Kashuba [6] and by
second-order ODE having boundary conditions at two dif-Romero and Scharer [7] who solved the equations numeri-
ferent points. By expressing the derivatives in finite differ-cally over a narrow range and then matched the numerical
ence form, i.e.,solutions to WKB analytical solutions satisfying the im-

posed boundary conditions on both sides. Colestock and
Kashuba remarked on the need to ensure that the numeri- c9 5

ci11 2 ci21

2D
, c0 5

ci11 1 ci21 2 2ci

D2 ,
cal domain is wide enough so the WKB solutions are good
approximations, but not so wide that roundoff error would

Eq. (2) becomes the pair of coupled difference equations,cause rapid exponential growth of the unwanted, nonphysi-
cal modes. Jaegar, Batchelor, and Weitzner [8] used a fully

A2
i ci21 1 A0

i ci 1 A1
i ci11 5 li xi ,

(4)
implicit global numerical scheme to solve sixth-order equa-
tions in one step, but did not give details of their method B2

i xi21 1 B0
i xi 1 B1

i xi11 5 ei ci ,
for inverting the difference equations. Ross, Chen, and
Mahajan [9] expanded the dependent variables in terms of where
cubic spline functions, then applied a projection operator
incorporating two-point boundary conditions to the differ-
ential equation, and so obtained an N 3 N matrix where A2

i 5
f1i

D2 2
g1i

2D
,

N was the number of grid points. They inverted the matrix
using Gaussian elimination to determine the coefficients

A0
i 5 2

2f1i

D2 1 h1i , (5)of the cubic spline functions and so provide a solution to
the global problem.

We present here a new and very straightforward single- A1
i 5

f1i

D2 1
g1i

2D
,

pass implicit numerical scheme for solving the two-point
boundary problem. Because this scheme is not computa-

and similarly for the B coefficients.tionally intensive, an ordinary desktop computer is more
To solve Eq. (4), we assume that c and x at locationthan adequate for solving complicated, high resolution,

i 1 1 are linear functions of c and x at location i; i.e., werealistic problems.
assume there exists the relationshipThe basic problem to be solved is the system of two

second-order ODEs coupled by terms linear in the depen-
ci11 5 ai ci 1 bi xi 1 «i ,

(6)
dent variables:

xi11 5 ci ci 1 ki ci 1 di ,
f1(x)c0 1 g1(x)c9 1 h1(x)c 5 l(x)x

(2) where the coefficients ai , bi , «i , ci , ki , and «i are to be deter-f2(x)x0 1 g2(x)x9 1 h2(x)x 5 e(x)c.
mined.

To find these coefficients, we use Eq. (6) to eliminate ci11
Equation (2) is a generalization of the standard equation, and xi11 in Eq. (4) and then solve the resulting equations for
Eq. (1), since if one sets d2E/dx2 5 c, Eq. (1) can be written ci and xi to obtain

c0 1 xc 5 2GE
(3)

ci 5 ai xi 1 bi ci21 1 ci ,
(7)

xi 5 di ci 1 ei xi21 1 fi ,E0 5 c.
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where This scheme is an exact solution of the coupled differ-
ence equations. Because of the speed and accuracy of the
scheme, it is feasible to use a very fine numerical grid (i.e.,

ai 5
li 2 bi A1

i

A0
i 1 ai A1

i
, bi 5 2

A2
i

A0
i 1 ai A1

i
, ci 5 2

«i A1
i

A0
i 1 ai A1

i
, large N) to obtain high resolution.

3. EXTENSION TO ARBITRARY NUMBER OFdi 5
ei 2 ki B1

i

B0
i 1 ci B1

i
, ei 5 2

B2
i

B0
i 1 ci B1

i
, fi 5 2

di B1
i

B0
i 1 ci B1

i
.

COUPLED SECOND-ORDER ODES

(8) Although Eq. (2) is quite general and applies to many
problems, there exist situations involving more than two

Equation (7) is then solved for ci and xi in terms of ci21 dependent variables. For example, one could have a situa-
and xi21, giving tion with three dependent variables having the coupled

equations

ci 5
bi

1 2 ai di
ci21 1

aiei

1 2 aidi
xi21 1

ci 1 ai fi

1 2 aidi
,

(9)
f1(x)c0 1 g1(x)c9 1 h1(x)c 5 l(x)x 1 s(x)f

f2(x)x0 1 g2(x)x9 1 h2(x)x 5 e(x)c 1 r(x)f (14)
xi 5

ei

1 2 ai di
xi21 1

dibi

1 2 aidi
ci21 1

fi 1 di ci

1 2 aidi
.

f3(x)f0 1 g3(x)f9 1 h3(x)f 5 u(x)c 1 t(x)x.

By replacing the dummy index i with i 2 1, Eq. (6) can Rather than working out the extension to three variables,
be rewritten as which is tedious, we now derive the general extension to

M dependent variables, hc(1), c(2), ..., c(M)j. Thus, we con-
ci 5 ai21ci21 1 bi21xi21 1 «i21 ,

(10) sider the set of M coupled second-order ODEs,

xi 5 ci21xi21 1 ki21ci21 1 di21 .

f ( j)(x)
d 2c( j)

dx2 1 g( j)(x)
dc( j)

dx
1 h( j)(x)c( j) 5 O

k?j
l( j,k)(x)c(k),

Comparison of Eqs. (9) and (10) shows that the recursion
relations for the sought-after coefficients are j 5 1, M. (15)

These equations can be put into finite difference form asai21 5
bi

1 2 ai di
, bi21 5

aiei

1 2 aidi
, «i21 5

ci 1 ai fi

1 2 aidi
,

(11)
D( j)

i c( j)
i21 1 S ( j)

i c( j)
i 1 U ( j)

i c( j)
i11 5 O

k?j
l( j,k)

i c(k)
i , (16)

ci21 5
ei

1 2 ai di
, ki21 5

dibi

1 2 aidi
, di21 5

fi 1 di ci

1 2 aidi
.

where the down (D), same (S), and up (U) coefficients
The actual coefficients are determined using a descend- are, in analogy to Eq. (5),

ing iteration scheme (analogous to the usual tridiagonal
method) as follows: Since cN and xN are specified, setting
i 5 N in Eq. (10) gives D( j)

i 5
f ( j)

i

D2 2
g( j)

i

2D

aN21 5 bN21 5 cN21 5 kN21 5 0 (12)
S( j)

i 5 2
2f ( j)

i

D2 1 h( j)
i (17)

and
U ( j)

i 5
f ( j)

i

D2 1
g( j)

i

2D
.

«N21 5 cN , dN21 5 xN . (13)

We define the diagonal element
Knowing aN21 , bN21 , cN21 , kN21 , «N21 , and dN21 allows aN21

? ? ? fN21 to be calculated using Eq. (8), and so aN22 etc.
l( j, j)

i 5 2S ( j)
i , (18)

can be determined using Eq. (11). Repeating this recursive
procedure determines hai , bi , «i , ci , ki , dij for the entire

so that Eq. (16) can be written asrange i 5 0 to N 2 1.
Using the boundary conditions c0 and x0 and Eq. (6)

allows ci and xi to be calculated for 1 # i # N 2 1, thus D( j)
i c( j)

i21 1 U ( j)
i c( j)

i11 5 OM
k51

l( j,k)
i c(k)

i . (19)
giving the desired solution of Eq. (2).
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In analogy to Eq. (6), we postulate that the solution at Thus, the sought-after coefficients are determined in a
backwards recursion scheme that is an extension of thelocation i 1 1 is a linear function of the solutions at the

location i and write tridiagonal method. Note that the P( j,k)
i and Q( j,k)

i are used
only one i at a time and so may be stored as two temporary
M 3 M matrices that are overwritten for each new i.

c( j)
i11 5 «( j)

i 1 OM
k51

T ( j,k)
i c(k)

i , (20)
3.2. Backwards Recursion Scheme

Since the c( j)
N are specified, setting i 5 N in Eq. (26) giveswhere «( j)

i and T ( j,k)
i are coefficients to be determined.

«( j)
N21 5 c( j)

N (29)3.1. Determination of «( j)
i and T ( j,k)

i

Using Eq. (20) to substitute for c( j)
i11 in Eq. (19), we obtain

and

T ( j,k)
N21 5 0. (30)D( j)

i c( j)
i21 1 U ( j)

i F«( j)
i 1 OM

k51
T ( j,k)

i c(k)
i G5 OM

k51
l( j,k)

i c(k)
i , (21)

Knowing T ( j,k)
N21 allows Q( j,k)

N21 to be calculated using Eq. (23).
or, after modest rearrangement, Knowing Q( j,k)

N21 allows the inverse P( j,k)
N21 to be found.

The process is then repeated; i.e., knowing P( j,k)
N21 and

«( j)
M21 allows T ( j,k)

N22 and «( j)
N22 to be calculated using Eqs. (27)OM

k51
Q( j,k)

i c(k)
i 5 D( j)

i c( j)
i21 1 U ( j)

i «( j)
i , (22)

and (28). The process is then continued down until T ( j,k)
0

and «( j)
0 have been found.

Knowing «( j)
i and T ( j,k)

i for 0 # i # N 2 1 allows determin-where
ing all c( j)

i in the range 1 # i # N 2 1; recall that c( j)
0 and

c( j)
N were specified as the two-point boundary conditions.

Q( j,k)
i 5 l( j,k)

i 2 U ( j)
i T ( j,k)

i . (23) The only computationally intensive part of this scheme
is the inversion of the M 3 M matrix Q( j,k)

i which has to
We define P(l,n)

i to be the inverse of Q( j,k)
i ; i.e., be done at each value of the independent variable, i.e. N 2

1 times. Thus, the complete numerical integration involves
O(M 3N) computations.OM

j51
P(l,j)

i Q( j,k)
i 5 dlk , (24)

4. SOME EXAMPLES

premultiply Eq. (22) by P(l,j)
i , sum over j, let l R j, change 4.1. The Standard Equation

the summation index to be k, and obtain
The WKB-like Fourier transform of Eq. (1), valid away

from x 5 0, is
c( j)

i 5 OM
k51

P( j,k)
i U (k)

i «(k)
i 1 OM

k51
P( j,k)

i D(k)
i c(k)

i21 . (25)

k4 2 xk2 1 G 5 0 (31)

However, letting i R i 2 1 in Eq. (20) gives
which has roots

c( j)
i 5 «( j)

i21 1 OM
k51

T ( j,k)
i21 c(k)

i21 . (26)
k2 5

x 6 Ïx2 2 4G

2
. (32)

Comparing Eqs. (25) and (26), we identify For uxu @ 2ÏG, the two roots are distinct and consist of a
large root,

T ( j,k)
i21 5 P( j,k)

i D(k)
i (27)

k2
l 5 x, (33)

and

and a small root,

«( j)
i21 5 OM

k51
P( j,k)

i U (k)
i «(k)

i . (28)
k2

s 5 G/x. (34)
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FIG. 1. Numerical solution of Eq. (3) for G 5 10 on the domain 220 # x # 60 using a 1000-point grid and the boundary condition hcleft, Eleft,
cright, Erightj 5 h0, 0, 0, 1j.

The large root (i.e., short wavelength mode) corresponds 4.2. Alfven Wave Mode Conversion
to balancing the first and middle terms in Eq. (31), while In Eq. (3) it is clear that the coupling term is intrinsic
the small root corresponds to balancing the middle and to the existence of one of the modes; i.e., if G is set to zero
last terms. If G . 0, then for x ! 21 both of these roots then there is only one wave-like mode. A slightly different
give nonoscillatory exponentially growing or decaying so- situation occurs when there are two coupled second-order
lutions. When x Q 2ÏG the two roots coalesce, but this is equations which would still exist even if the coupling terms
also the region where the WKB description is invalid. were set to zero. An example of this is the problem of

Figure 1 shows solutions to Eq. (3) for G 5 10 on the mode conversion between fast (compressional) and slow
domain 220 # x # 60 using a 1000-point grid and the (shear) cold Alfven waves. The equations governing this
boundary condition hcleft, Eleft, cright, Erightj 5 h0, 0, 0, 1j. coupling for a radially inhomogeneous cyclindrically sym-
For x . 20, the long and short wavelength modes are metric plasma are [10, 11]
clearly distinguishable and it is seen that the wavelength
of the long wavelength mode increases with increasing x
while the opposite is true for the short wavelength modes. 1

r
d
dr F rS

S 2 n2
z

dẼz

dr G1 F2
m2S

r2 (S 2 n2
z)

1 PG Ẽz

(35)The coalescence region is seen to be in the vicinity of the
x Q 2ÏG P 6, as suggested by the approximate WKB

5 2
imnz

r
B̃z

d
dr S 1

S 2 n2
z
Dmodel. The boundary condition h0, 0, 1, 0j gives a solution

that is essentially similar to the h0, 0, 0, 1j case shown in
Fig. 1, but is orthogonal in phase.

andThe two other independent solutions obtained using the
respective boundary conditions h1, 0, 0, 0j and h0, 1, 0, 0j
give solutions that decay exponentially with increasing x. 1

r
d
dr F r

S 2 n2
z

dB̃z

dr G1 F2
m2

r2 (S 2 n2
z)

1 1G B̃z

(36)
Figure 2 shows the numerically calculated solution for the
case of h0, 1, 0, 0j. For this case and also for h1, 0, 0, 0j the
boundary condition is forcing a mode to be finite at the 5

imnz

r
Ẽz

d
dr S 1

S 2 n2
z
D,

left-hand side of the x domain, where the mode is evanes-
cent. Since the right-hand boundary condition requires the
mode to vanish, the mode decays exponentially with in- where m is the azimuthal mode number, S(r) is the perpen-

dicular plasma dielectric, P(r) is the parallel plasma dielec-creasing x.
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FIG. 2. Same as Fig. 1, except hcleft, Eleft, cright, Erightj 5 h0, 1, 0, 0j.

tric, and nz is the parallel refractive index. Thus, if m 5 0 Alfven wave mode conversion. An example involving a
system of four coupled ODEs has also been worked out,or if the plasma is uniform, the two equations describe two
but the derivation of this system requires a lengthy discus-decoupled modes, the Ẽz mode (slow, shear wave) and the
sion about the underlying physics, and so the presentationB̃z mode (fast, compressional mode). Typical numerical
of this more complicated example will be deferred to asolutions for these equations using the method presented
future physics-oriented paper.here are given for tokamak parameters in Figs. 3 and 4 of

Ref. [10] and for magnetospheric parameters in Fig. 1 of
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